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Abstract 
 

The High-Fidelity Generalized Method of Cells (HFGMC) micromechanics model has recently 
been reformulated by Bansal and Pindera (in the context of elastic phases with perfect bonding) to 
maximize its computational efficiency. This reformulated version of HFGMC has now been extended to 
include both inelastic phases and imperfect fiber-matrix bonding. The present paper presents an overview 
of the HFGMC theory in both its original and reformulated forms and a comparison of the results of the 
two implementations. The objective is to establish the correlation between the two HFGMC formulations 
and document the improved efficiency offered by the reformulation. The results compare the macro and 
micro scale predictions of the continuous reinforcement (doubly-periodic) and discontinuous 
reinforcement (triply-periodic) versions of both formulations into the inelastic regime, and, in the case of 
the discontinuous reinforcement version, with both perfect and weak interfacial bonding. The results 
demonstrate that identical predictions are obtained using either the original or reformulated 
implementations of HFGMC aside from small numerical differences in the inelastic regime due to the 
different implementation schemes used for the inelastic terms present in the two formulations. Finally, a 
direct comparison of execution times is presented for the original formulation and reformulation code 
implementations. It is shown that as the discretization employed in representing the composite repeating 
unit cell becomes increasingly refined (requiring a larger number of sub-volumes), the reformulated 
implementation becomes significantly (approximately an order of magnitude at best) more 
computationally efficient in both the continuous reinforcement (doubly-periodic) and discontinuous 
reinforcement (triply-periodic) cases. 
 
1. Introduction  
 

Micromechanical analyses provide the overall behavior of a multiphase material by taking into 
account the response of the individual constituents, their volume fractions and the detailed interaction 
between the phases. A review of various micromechanical models can be found in the monographs by 
Aboudi (1991) and Nemat-Nasser and Hori (1999) for example. In the present report, we discuss the 
computational efficiency of the recently reformulated high-fidelity generalized method of cells (HFGMC) 
micromechanical model. This model is the third generation in a sequence of micromechanical models; the 
first one being the method of cells (MOC) first described by Aboudi (1981) and used to model wave 
propagation in elastic fiber-reinforced composites. This work was followed by the prediction of the 
overall behavior of elastic-viscoplastic unidirectional composites using MOC, see Aboudi (1982). The use 
of the MOC to analyze various other types of composites appeared in several subsequent papers, all of 
which have been summarized in a monograph by Aboudi (1991). The number of different phases and 
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fiber architectures of a composite that the MOC was able to analyze was limited to four, thus motivating 
the advent of the generalized method of cells (GMC) theory (which forms the second generation in the 
sequence), put forth by Paley and Aboudi (1992), assuming continuous reinforcements and Aboudi 
(1995), assuming discontinuous reinforcements, which extended the model to an arbitrary number of 
phases with general architectures. This generalization extended the modeling capability of the MOC to 
include the following:  
 

• Inelastic thermomechanical response of multiphase, e.g., metal matrix, composites.  
• General modeling of composite architectures: 

1. Modeling of various fiber shapes by approximating the fiber-inclusion by a 
suitable assemblage of subcells.  

2. Analysis of different fiber array packing or distributions.  
• Modeling of porosities and damage.  
• Modeling of interfacial regions around inclusions, including interfacial degradation.  

 

Two review papers documenting the application of MOC and GMC by various researchers has been 
presented by Aboudi (1996, 2004), respectively. 

As discussed by Pindera and Bednarcyk (1999) for doubly-periodic composites and Bednarcyk 
and Pindera (2000) for triply-periodic composites, due to the inherent lack of shear coupling between 
normal and shear, stress and strain components within the GMC analysis, it is possible to dramatically 
reduce the order of the algebraic system by employing the subcell stresses as unknowns (instead of the 
strains). This efficient reformulation of the GMC yields a new system of algebraic equations, which is 
significantly smaller than the original (i.e., not reformulated) system, especially as the number of subcells 
increases. As a result of this reformulation of the GMC, the computational efficiency of the model is 
significantly improved. Consequently, the dramatic advantage of this reformulation is obvious, when one 
considers the analysis of inelastic composite structures, wherein the constitutive equations provided by 
the GMC are employed repeatedly at every integration point throughout the structure.  

Although it has been extensively shown that GMC accurately predicts the macroscopic response 
of multiphase materials with periodic microstructures, both in the elastic and inelastic regions, the 
method’s accuracy of estimating local stress and strain fields suffers in comparison to its macro predictive 
capability. This is rooted in the first-order representation of the displacement field in the individual phases 
and the satisfaction of the traction and displacement continuity conditions between the phases in a volume 
averaged sense. The net effect being the absence of so-called shear coupling, which ensures that both 
normal and shear stresses at the local level are present for a given macroscopically-applied stress. As a 
result, local stress fields are not well captured by the GMC; thus impacting the method’s ability to predict 
accurately local events such as fiber and/or matrix damage evolution. This shortcoming has been 
corrected in the HFGMC theory (the now third generation of these micromechanics models) and was the 
driving motivation behind the development of this theory which is discussed in the next section.  

Recently, NASA Glenn Research Center, in conjunction with its partners, has developed a 
micromechanics analysis code (based on aforementioned generalized method of cells toolset) known as 
MAC/GMC, which has many user friendly features and significant flexibility for the analysis of 
continuous, discontinuous, laminate, or woven (polymeric, ceramic, and/or metal matrix) composites with 
phases that can be represented by arbitrary elastic, viscoelastic, and/or viscoplastic constitutive models. 
The most recent version of this code (Version 4, see Bednarcyk and Arnold (2002a)) incorporates not 
only GMC but HFGMC as well, along with additional material models including smart (electromagnetic 
and shape memory alloy) materials, and yield surface prediction for metal matrix composites. 

 
2. The High-Fidelity Generalized Method of Cells (HFGMC)  
 

The HFGMC discussed herein is an extension/specialization of the linear electro-magneto-
thermo-elastic triply-periodic theory for discontinuously reinforced, (i.e., short-fiber), composites 
described by Aboudi (2001), to that of thermoinelastic behavior of composites with discontinuous weakly 
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bonded fibers. The inclusion of inelastic phases follows the analysis that has been presented previously by 
Aboudi et al. (2002, 2003) for the case of continuous fibers, i.e. doubly-periodic boundary conditions. In 
the present paper, this micromechanical model will be briefly outlined with special attention paid to 
describing the inelastic and imperfect bonding extensions.  

The model is based on a homogenization technique for composites with triply-periodic 
microstructure (for example, those representative of discontinuously reinforced composites), where figure 
1a shows this periodic microstructure in the global x coordinate system. The parallelepiped repeating unit 
cell (RUC) illustrated in figure 1(b), defined with respect to RUC coordinates (y1, y2, y3), of such a 
composite is divided into Nα, Nβ, and Nγ subcells in the y1, y2, and y3 directions, respectively. Each subcell 
(illustrated in figure 1c) is identified by the indices (αβγ) with α = 1,…, Nα , β = 1,…, Nβ , and γ = 1,…, 
Nγ , and may contain a distinct homogeneous material. The dimensions of the subcell are denoted by dα, 

hβ, and lγ, respectively. A local coordinate system, ( ( ) ( ) ( )
1 2 3, ,y y yα β γ ) is introduced in each subcell whose 

origin is located at its center, see figure 1c. The local (subcell) constitutive equation of the material which, 
in general, is assumed to be thermoinelastic is given by 
 

 ( ) ( ) ( ) ( )( ) ( )I Tαβγ αβγ αβγ αβγ αβγ= − − ∆σ C ε ε Γ  (1) 

 

where ( )αβγσ , ( )αβγε , ( )I αβγε , and ( )αβγΓ are the stress, total strain, inelastic strain and thermal stress 

tensors, respectively, in subcell (αβγ). In eq. (1), ( )αβγC  is the elastic stiffness tensor of the material for 
subcell (αβγ), and T∆  denotes the temperature deviation from a reference temperature. Lastly, the 

inelastic strain ( )I αβγε  can be obtained from either a Prandtl-Reuss classical plasticity formulation 
(Mendelson (1986)) or by an appropriate integration of a viscoplastic formulation (i.e., set of flow and 
evolution equations) for example.  

The basic assumption in HFGMC is that the displacement vector ( )αβγu  in each subcell is 

expanded into quadratic form1 in terms of its local coordinates ( ( ) ( ) ( )
1 2 3, ,y y yα β γ ) as follows: 
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u ε x W W W W W

W W

 (2) 

  
where ε  is the applied (external) average strain tensor, x is the global coordinate vector (see fig. 1a), and 

the unknown terms ( )
( )
lmn

αβγW , must be determined from the fulfillment of the equilibrium conditions, the 

periodic boundary conditions, and the interfacial continuity conditions of displacements and tractions 
between subcells. The periodic boundary conditions ensure that the displacements and tractions at 
opposite surfaces of the repeating unit cell are identical, see Aboudi (2001) for more details. A 
foundational assumption in the present micromechanical analysis is that all these conditions are imposed 
in an average (integral) sense. 

                                                 
1 It should be mentioned that both MOC and GMC employ a first order expansion of the displacement vector in each 
subcell. Furthermore, the present second order (quadratic) expansion, eq. (2), that is foundational to the HFGMC 
theory has been previously employed by Aboudi (1986, 1987, 1988) in the analysis of wave propagation in 
composite materials, and by Aboudi et al. (1999) in the determination of the response of functionally graded 
materials to thermoelastic loading. 



NASA/TM—2004-213438 4

 
 
 

 
 
Figure 1.—(a) A multiphase composite with triply-periodic microstructure. (b) The repeating unit cell, 

defined in the (y1, y2, y3) coordinate system, is discretized into Nα × Nβ × Nγ subcells. (c) The 

monolithic subcell is defined in the local coordinate system ( ( )
1y α , ( )

2y β , ( )
3y γ ). 

 
 

Consequently, imposition of the equilibrium equations in each subcell together with the 
application of the interfacial and periodicity conditions results in a linear system of algebraic equations 
being obtained which can be represented in the following form:  

 
 = +KU f g  (3) 
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where the matrix K contains information on the geometry and thermomechanical properties of the 
materials within the individual subcells (αβγ), and the displacement vector U contains the unknown 

displacement coefficients ( )
( )
lmn

αβγW  which appear on the right-hand side of eq. (2). The thermomechanical 

vector f contains information on the applied average strains ε  and the imposed temperature deviation 
T∆ ; while the inelastic force vector g appearing on the right-hand side of eq. (3) contains the inelastic 

effects given in terms of the integrals of the inelastic strain distributions. Note, the inelastic integrals 
within g depend implicitly on the elements of the displacement coefficient vector U, thus requiring an 
incremental solution of eq. (3) at each point along the loading path, see Aboudi et al. (2003) for more 
details. 

The solution of eq. (3) then enables the establishment of the following localization relation which 

relates the average strain ( )αβγε  in the subcell (αβγ) to the externally applied average ε  in the form: 
 
 

 ( ) ( ) ( ) ( )th ITαβγ αβγ αβγ αβγ= + ∆ +ε A ε A D  (4) 
 
 

where ( )αβγA  and ( )th αβγA  are the mechanical and thermal strain concentration tensors, respectively, of 

the subcell (αβγ), and ( )I αβγD  is a vector that involves the current inelastic effects in the subcell (see 
Aboudi, 2004). 

The final form of the effective constitutive law of the multiphase thermo-inelastic composite, 
which relates the average (macro) stress σ  and strain ε , is established as follows: 

 

 ( )IT= − ∆ +* *σ C ε Γ σ  (5) 

 

In this equation *C  is the effective elastic stiffness tensor, *Γ  is the effective thermal stress tensor of the 

composite, and Iσ  is the global inelastic stress tensor. All of these global quantities can be expressed in a 
closed-form manner in terms of the mechanical and thermal concentration tensors which appear in eq. (4) 

together with the inelastic term ( )I αβγD , see Aboudi et al. (2001, 2002, 2003) and Aboudi (2004) for more 
details. They are given as follows:  
 

 ( ) ( )

1 1 1

1 N NN

d h l
DHL

β γα
αβγ αβγ

α β γ
α β γ= = =

= ∑∑∑
*C C A  (6) 

 

 ( ) ( ) ( )

1 1 1

1 N NN
thd h l

DHL

β γα
αβγ αβγ αβγ

α β γ
α β γ= = =

− ⎡ ⎤= −⎣ ⎦∑∑∑
*Γ C A Γ  (7) 

 

 ( ) ( )
( )
( )
0,0,0

1 1 1

1 N NN
II d h l

DHL

β γα
αβγ αβγ αβγ

α β γ
α β γ= = =

− ⎡ ⎤= −⎣ ⎦∑∑∑σ C D R  (8) 

 

where ( )
( )
0,0,0
αβγR  is an expression that represents the integral of the inelastic strain distributions and D, H, 

and L are the repeating unit cell dimensions (see fig. 1b).  
Equation (3) forms a system of 21N N Nα β γ  algebraic equations. The size of this matrix (and 

thus the solution time) can however, be significantly reduced by utilizing the continuity of displacements 
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across the interfaces between the phases in the case of perfect bonding. This reformulation of HFGMC for 
computational speed was originally2 put forth by Bansal and Pindera (2004) for the special case of 
continuous, perfectly bonded fibers (i.e., doubly-periodic case) and linear elasticity. Therein the number 
of unknowns is shown to be reduced (by approximately half when compared to the original) by treating 
the average displacements at the surfaces of the subcells as the only unknowns. In the present case of 
discontinuous fibers (i.e., the triply-periodic case) the same concept will be applied wherein the average 

displacement at the surface ( )
1 2y dα

α= −  of subcell (αβγ) is given by:  

 

 
( )

( ) ( )
( )

( ) ( )

1

2 21

2 3

22 2

1
h l

d
y

h l

d y d y
h l

β γ

α α

β γ

αβγ αβγ β γ

β γ
=−

− −

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫ ∫u u  (9) 

 

with similar definitions of the average surface displacements 
( )

( )
2

αβγu  and 
( )

( )
3

αβγu  evaluated at the 

surfaces ( )
2 2y hβ

β= −  and ( )
3 2y lγ

γ= − , respectively, of this subcell. It should be emphasized that the 

introduction of the average surface displacements at ( )
1 2y dα

α= , ( )
2 2y hβ

β= , and ( )
3 2y lγ

γ=  is not 

necessary because these displacements are equal, due to the interfacial continuity, to 
( )

( )
1

1, ,α β γ+u , 
( )

( )
2

, 1,α β γ+u , and 
( )

( )
3

, , 1α β γ +u , respectively. Consequently in terms of these average surface displacements in 
all subcells, the new system of equations that replaces eq. (3) in the efficient reformulation of HFGMC is 
given by  

 

 ′ ′ ′= +K U f g  (10) 
 

where, as in eq. (3), the matrix ′K  contains information on the geometry and thermomechanical 

properties of the materials within the individual subcells (αβγ), and the vector U  contains the unknown 
average surface displacements of all subcells. The latter can be related to the unknown field quantities 

( )
( )
lmn

αβγW  which appear on the right-hand side of eq. (2). Here too, the mechanical vector ′f  contains 

information on the applied average strains ε and the imposed temperature deviation T∆ . The inelastic 
force vector ′g  appearing on the right-hand side of eq. (10) contains the inelastic effects given in terms of 
the integrals of the inelastic strain distributions. As a result of this reformulation (where the unknowns 
now are only the average surface displacements) the size of the system of algebraic equations, see  

eq. (10), becomes: 9N N Nα β γ + ( )3 N N N N N Nα β α γ β γ+ +  as compared to the previous original 

formulation with 21N N Nα β γ  unknowns. A comparison of the number of unknowns present in both the 

doubly-periodic and triply-periodic versions of the original formulation and reformulation of HFGMC is 
plotted in figure 2. Clearly, since the solution speed for the inversion of a given system of equations is on 
the order of the rank cubed of the matrix, it is immediately obvious that in the limit, i.e., (21/9)3, this 
reformulation could enhance the solution speed by approximately a factor of 12 at best. In the case of 
sparse solvers this rank cubed relation is not completely applicable as additional matrix characteristics 
come into play. 

                                                 
2 Note, Zhong and Pindera (2002) and Bansal and Pindera (2002, 2003) earlier proposed an equivalent reformulation 
(i.e., reduction in variable formulation) for HFGMC’s non-periodic, predecessor—HOTFGM (Higher Order Theory 
for Functionally Graded Materials).  
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Note that comparing the number of unknowns required by HFGMC (original/reformulated) to its 
corresponding predecessor GMC (original/reformulated) it becomes obvious that in the limit the original 
HFGMC formulation (HFGMC/GMC = 21N3/6N3, assuming Nα = Nβ = Nγ = N) has 3.5 times more 
unknowns than does GMC, whereas in the case of the reformulation, the ratio is 

 
 

3 2

2

9 9
lim 3

3 3N

N N
N

N N→∞

⎛ ⎞+ =⎜ ⎟+⎝ ⎠
 

 
 

Therefore, again assuming the use of a classic approach for inverting the matrix, this would mean that 
GMC original is approximately 43 times faster than HFGMC original; however comparing reformulated 
GMC to HFGMC we see that GMC’s maximum speed-up as compared with HFGMC is 27N3. For 
example, given a 12×12×12, repeating unit cell, the maximum reformulated speed-up ratio indicates that 
if a solution using HFGMC would take approximately 13 hours then GMC would take approximately 1 
second. Consequently, even though GMC does not predict local fields as accurately as does HFGMC it 
still provides similar global accuracy as compared with HFGMC, thus it remains a valuable tool in the 
formulation of a multiscale computational approach. 

Thus far perfect bonding has been assumed to exist at the interfaces between subcells such that 
the displacements are continuous across any interface. The generalization of HFGMC to the case of 
imperfect bonding between phases has been presented previously by Bednarcyk et al. (2004) for the case 
of continuous fibers. There and herein the debonding model utilized follows that of Bednarcyk and 
Arnold (2000, 2002b), that is:  

 
 

 ( )Int Int

j j ju R t t⎡ ⎤ =⎣ ⎦   (11) 

 
 

where 
Int

ju⎡ ⎤⎣ ⎦  is the discontinuity in displacement component j at interface Int, 
Int

jt  is the corresponding 

traction component at interface Int, and ( )jR t  is a time-dependent proportionality function. The 

introduction of such a debonding model, as given by eq. (11), requires a somewhat different and more 
complicated mathematical derivation to accomplish the efficient reformulation of HFGMC. This is 
because; now the continuity of displacement at the interfaces between subcells is no longer valid and now 
requires the utilization of eq. (11) instead of the procedure described by eqs. (9) and (10).  

The major steps illustrating how this reformulation can be achieved in the presence of imperfect 
bonding between the phases is briefly outlined below, with further details reserved for a later publication. 

Let us temporarily introduce the average displacements at the interfaces evaluated at ( )
1 2y dα

α= , 

( )
2 2y hβ

β= , and ( )
3 2y lγ

γ=  which are denoted, respectively, by: 
( )

( )
1

αβγ
+

u , 
( )

( )
2

αβγ
+

u , and 
( )

( )
3

αβγ
+

u . For 

example, 
 
 

 
( )

( ) ( )
( )

( ) ( )

1

2 21

2 3

22 2

1
h l

d
y

h l

d y d y
h l

β γ

α α

β γ

αβγ αβγ β γ

β γ

+

=
− −

⎡ ⎤
= ⎢ ⎥

⎣ ⎦
∫ ∫u u  (12) 
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These variables are not needed in the reformulation analysis neither in the perfect bonding case (as stated 
before) nor in the imperfect case, yet are merely introduced here as an intermediate stage to aid in 
explanation. 
 By implementing eq. (11) and evaluating it in the average sense at the surface whose normal is in 

the 1-direction at ( )
1 2y dα

α= , one obtains the expression: 

 
( )

( )
( )

( ) ( ) ( )
( )

( )
1 1 1

1, , tαβγ α β γ α αβγ
+ +

+= −u u R t  (13) 

 
 

where 
( )

( )
1

αβγ
+

t  is the surface average of the traction vector evaluated at ( )
1 2y dα

α= , namely 

 
 

 
( )

( ) ( )
( )

( ) ( )
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22 2

1
h l

d
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h l

d y d y
h l

β γ
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+

=
− −

= ∫ ∫t t   (14) 
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Figure 2.—Plot of number of unknowns vs. number of subcells (assuming an equal number of subcells in 

each direction) for the original and reformulated versions of the doubly-periodic and triply-
periodic HFGMC. 
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and ( ) ( )tαR  is a vector that denotes the appropriate debonding time-dependent parameters at this 

surface. 

Similar to eq. (13), we obtain by averaging over the other two surfaces at ( )
2 2y hβ

β=  and 
( )
3 2y lγ

γ=  that 

 
 

 

( )
( )

( )
( ) ( ) ( )

( )
( )

2 2 2
, 1, tαβγ α β γ β αβγ

+ +
+= −u u R t

 (15) 
 
 

 
( )

( )
( )

( ) ( ) ( )
( )

( )
3 3 3

, , 1 tαβγ α β γ γ αβγ
+ +

+= −u u R t  (16) 

 
One can immediately observe from eqs. (13), (15), and (16) that unlike in the perfect bonding case where 
( )

( )
( )

( )
1 1

1, ,αβγ α β γ
+

+=u u , 
( )

( )
( )

( )
2 2

, 1,αβγ α β γ
+

+=u u , and 
( )

( )
( )

( )
3 3

, , 1αβγ α β γ
+

+=u u , these quantities (denoted by ‘+’) are 
related to the corresponding adjacent average surface displacements (denoted by ‘bar’) in a complicated 
manner that involves both the average surface tractions and the debonding parameters. By employing the 
constitutive equations of the material that occupies the subcell (αβγ), these surface tractions can be 

immediately related to the surface displacements 
( )

( )
1

αβγ
+

u , 
( )

( )
1

αβγu , 
( )

( )
2

αβγ
+

u , 
( )

( )
2

αβγu , 
( )

( )
3

αβγ
+

u , and 
( )

( )
3

αβγu . Consequently, we can rewrite eqs. (13), (15), and (16) by moving all quantities with the ‘+’ 
superscript to the left-hand side, while keeping all ‘bar’ quantities as well as the thermal and inelastic 
variables on the right-hand side. Thus eqs. (13), (15), and (16) provide us with a system of nine algebraic 

equations that relate the nine variables: 
( )

( )
1

αβγ
+

u , 
( )

( )
2

αβγ
+

u , 
( )

( )
3

αβγ
+

u  to 
( )

( )
1

1, ,α β γ+u , 
( )

( )
1

αβγu , 
( )

( )
2

, 1,α β γ+u , 
( )

( )
2

αβγu , 
( )

( )
3

, , 1α β γ +u , and 
( )

( )
3

αβγu . Let us represent this system of nine equations by:  
 
 

 thermoinelastic terms+ = +FU HU  (17) 
 
 
where F and H are matrices whose elements depend on the material properties and geometry of the 
material within the subcell as well as the debonding parameters that characterize its surfaces. The formal 

solution of this system of equations provides the requested relations between +U  and U , i.e.: 
 
 

 1 thermoinelastic terms+ − ⎡ ⎤= +⎣ ⎦U F HU  (18) 

 
 

In conclusion, unlike the perfect bonding case where +U  is immediately related to U , in the case of 

weak bonding this relation is given in terms of U by lengthy and somewhat complicated expressions (as a 

result of which the coding is presently far more complicated). In both cases the variables +U  are not 
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needed or used in the programming and thus the number of unknowns in eq. (10) in the imperfect bonding 

and the perfect bonding cases is the same (namely, 9N N Nα β γ + ( )3 N N N N N Nα β α γ β γ+ + ). 

 
 
3. Results and Discussion 
 

 The results presented herein serve two purposes. First, they establish the correlation between the 
predictive capabilities of the original and reformulated versions of HFGMC, in both the elastic and 
inelastic regimes. Second, they document the improved computational efficiency offered by the efficient 
reformulation. Both the continuously reinforced (doubly-periodic) and discontinuously reinforced (triply-
periodic) versions of HFGMC will be employed to model a 25% boron/aluminum (B/Al) material system. 
These two classes of problems merely constitute specializations of the more general capability present in 
the fully coupled thermo-electro-magneto-mechanical reformulated HFGMC code. The isotropic boron 
fiber (inclusion) is considered to be isotropic and elastic, while the aluminum matrix is considered to be 
isotropic and elasto-plastic. Mendelson’s (1986) incremental plasticity theory is employed to model the 
inelastic aluminum matrix response (see Aboudi et al., 2003 for details). For the demonstration results 
presented herein, the aluminum matrix is treated as elastic-perfectly plastic (i.e., with no inelastic 
hardening). The material properties for the boron and aluminum materials are given in table 1. 
 For the continuously reinforced (doubly-periodic) composite case, the employed RUC is shown 
in figure 3, where the RUC has been discretized into 32×32 subcells so as to capture the circular geometry 
of the fiber cross-section sufficiently. This RUC was employed to simulate the longitudinal (in the fiber 
direction) and transverse tensile response of a 25% B/Al composite (assuming perfect fiber-matrix 
bonding), with the predicted global responses being shown in figure 4. As expected, the composite is 
considerably stiffer in the longitudinal direction compared to the transverse and matrix plasticity is also 
much more pronounced in the transverse direction. Clearly, figure 4 indicates that the global responses 
predicted by the original and reformulated versions of HFGMC are virtually identical. 
 For the case of applied transverse tension, the local effective stress, mean stress, and equivalent 
plastic strain fields have been plotted in figure 5 at an applied global strain level of 0.005 (see fig. 4). As 
was the case in the global response, figure 5 indicates that the local response predicted by the original and 
reformulated versions of HFGMC are virtually identical. However, it should be noted that upon close 
examination of the local fields in figure 5, slight differences between the original and reformulated 
predictions are discernable. These differences are attributable to small numerical variations that arise due 
to the distinct inelastic quantities employed in the two formulations. Despite the fact that in both cases, 
the inelastic terms are approximated using identical Legendre polynomials, these slight differences 
persist. The reason for this is that in the case of the original formulation of HFGMC, the inelastic terms 
are derived from stresses and stress moments that have been evaluated in a volume-averaged sense, while 
in the reformulated version the inelastic terms are computed from surface integrals of the stresses. This 
directly follows from the Introduction, as the unknowns are the surface integrals of the displacements, see 
eq. (9) for example. This explanation of the observed differences in figure 5 is confirmed by the fact that 
prior to yielding, while the material throughout the composite is still in the linear elastic regime, the local 
and global results predicted by the two formulations are exactly the same. 
 
 

Table 1.—Constituent material properties. 
 E (GPa) ν Yield Stress (MPa) 
Boron Fiber/Inclusion 413.7 0.20 – 
Aluminum Matrix 55.16 0.30 90. 

 
 



NASA/TM—2004-213438 11

 
Figure 3.—Doubly-periodic) repeating unit cell, discretized into 32×32 subcells to represent a 

continuously-reinforced 25% B/Al composite. 
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Figure 4.—Global longitudinal and transverse tensile response of 25% continuously reinforced B/Al 
predicted by the original and reformulated versions of HFGMC. 
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Original Formulation Reformulation 

  

  

  
Figure 5.—Local fields predicted by the original and reformulated versions of HFGMC in a 25% B/Al 

composite. (a) Effective stress, eff 3 2ij ijS Sσ = , ijS  = deviatoric stress components; (b) Mean 

stress, [ ]mean 11 22 33 3σ σ σ σ= + + ; (c) Equivalent plastic strain, 2 3p p p
eq ij ijd dε ε ε= ∫ . 

 
 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 

 
(c) 
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Figure 6.—Exploded view of the triply-periodic repeating unit cell, discretized into 8×8×8 subcells to 

represent a discontinuously-reinforced 25% B/Al composite. 
 
 
 For the discontinuously-reinforced (i.e., particulate) composite case, the employed RUC is shown 
in figure 6; where it has been discretized into 8×8×8 subcells in order to approximate a spherical 
inclusion. This RUC was employed to simulate the tensile response of a 25% particulate reinforced B/Al 
composite, with both perfect and imperfect (weak) interfacial bonding. In the weak bonding case, the 

interfacial proportionality constant, ( )jR t , was set to a large value, which simulates an extremely 

compliant interface, for illustrative purposes. The global tensile responses predicted by the original and 
reformulated versions of HFGMC in the case of perfect and weak bonding are plotted in figure 7. The 
influence of the weak interfacial bonding is immediately apparent in the predictions; with the perfect 
bonding case being considerably stiffer and yielding at a much higher global stress as compared with the 
weakly bonded case. Again, figure 7 indicates that both the original and reformulated versions of 
HFGMC yield very similar predictions for the global composite response. Note, in the case of weak 
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bonding, the predictions are virtually identical, whereas a small difference is noticeable in the perfect 
bonding case. This difference is again attributable to small numerical differences between the volume-
averaged inelastic terms (in the case of the original formulation), and the surface-averaged inelastic terms 
(in the case of the reformulation). In the elastic regime, the predictions of both formulations are identical. 
 Once again, the local effective stress, mean stress, and equivalent plastic strain fields are plotted 
in figures 8 and 9, respectively for both the perfectly bonded and weakly bonded cases. These plots 
represent the local fields at an applied global strain level of 0.005 (see fig. 7) on the plane near the middle 
of the RUC indicated in figure 6. Comparing figures 8 and 9, the local effects of the weak interfacial 
bonding are evident. For example, in the case of perfect bonding (fig. 8), the inclusion is able to support a 
high load/stress level. In contrast, the weakly bonded inclusion (fig. 9) cannot support much load as the 
weak interface disallows transfer of stress from the matrix to the inclusion. Thus, the inclusion 
experiences a very low stress level and, as was shown in the global response plotted in figure 7, it 
becomes ineffective at stiffening the composite. Comparing the local fields predicted by the original and 
reformulated versions of HFGMC, it is again clear that both formulations yield very similar local results 
for both perfect and weak interfacial bonding within the particulate reinforced B/Al composite. The slight 
differences that are discernable are again attributable to numerical differences that arise between the 
volume-averaged and surface-averaged inelastic terms. 
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Figure 7.—Global tensile response of 25% discontinuous B/Al predicted by the original and reformulated 

versions of HFGMC with perfect and weak interfacial bonding. 
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Original Formulation Reformulation 

  

  

  
Figure 8.—Local fields predicted by the original and reformulated versions of triply-periodic HFGMC in 

a 25% discontinuous B/Al composite with perfect bonding. (a) Effective stress, 

eff 3 2ij ijS Sσ = , ijS  = deviatoric stress components; (b) Mean stress, 

[ ]mean 11 22 33 3σ σ σ σ= + + ; (c) Equivalent plastic strain, 2 3p p p
eq ij ijd dε ε ε= ∫ . 

 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
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Original Formulation Reformulation 

  

  

  
Figure 9.—Local fields predicted by the original and reformulated versions of triply-periodic HFGMC in 

a 25% discontinuous B/Al composite with weak bonding. (a) Effective stress, 

eff 3 2ij ijS Sσ = , ijS  = deviatoric stress components; (b) Mean stress, 

[ ]mean 11 22 33 3σ σ σ σ= + + ; (c) Equivalent plastic strain, 2 3p p p
eq ij ijd dε ε ε= ∫ . 

(a) 
 
 
 
 
 
 
 
 
 
 
 
 
 

(b) 
 
 
 
 
 
 
 
 
 
 
 
 
(c) 
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The results presented above clearly illustrate the fact that the original and reformulated 
implementations of the HFGMC theory yield essentially identical results aside from small numerical 
deviations associated with the inelastic strain approximation methods utilized. Tables 2 and 3 now present 
a direct comparison of the efficiency of the two formulations as a function of the RUC discretization. In 
order to isolate the effect of the reduced number of equations offered by the reformulation, these results 
were generated for the linear elastic case in which only the effective thermo-elastic properties of the 
composite material are determined. That is, in contrast to the results presented in figures 4 and 7, a full 
simulation of the elasto-plastic behavior of the composite has not been performed. This eliminates the 
effects of the incremental loading procedure and the inelasticity iterations on the execution time of the 
codes, as these effects are not relevant to the improved efficiency offered by the reformulation. Note that 
these execution time comparison cases were executed on a 1.7 GHz PC with 1 GB of RAM. 
 Table 2 presents the improved computational efficiency attributable to the reformulation of the 
continuously reinforced (doubly-periodic) version of HFGMC. The RUC is varied from a simple coarse 
4×4 discretization to a well-refined 64×64 discretization. The reformulation decreases the number of 
equations dramatically and, to a lesser extent, decreases the number of non-zero terms in the matrices  
K  and ′K  (see eqs. (3) and (10)). As a result, the sparseness (i.e., fraction of non-zero terms relative to 
total number of elements in matrix) decreases in the case of the reformulation. Most importantly, the 
execution time associated with the reformulated version of HFGMC decreases as compared to the original 
formulation. For RUCs with only a few subcells, this improvement in execution time is modest (1.4 
times, see table 2). However, in the case of the 64×64 representation, the execution time is improved by 
2.4 times. 
 The discontinuously reinforced (triply-periodic) version of HFGMC is considerably more 
computationally demanding than the doubly-periodic version for both the original formulation and 
reformulation. Comparing the 8×8 doubly-periodic case (which has 64 subcells) with the (4×4×4) triply-
periodic case (which also has 64 subcells), the number of equations increases from 960 to 1344 (in the 
original formulation) and from 432 to 720 (in the reformulation), see tables 2 and 3. This larger number of 
equations obviously leads to greater execution time when using the triply-periodic version. In table 3, the 
RUC discretization is varied from a coarse 4×4×4 representation to a more refined 12×12×12 
representation. As was the case in the doubly-periodic version, the number of equations are decreased 
roughly by a factor of two. The number of non-zero terms in the K  and ′K  matrices, however, now 
increases slightly in the reformulated version of HFGMC. The sparseness of these matrices is again 
decreased due to the reformulation. Once again, comparing triply periodic execution times for the original 
and reformulated versions of HFGMC, see table 3, it is clear that the computational efficiency of the 
reformulation increases significantly as the number of subcells increases. In fact, due to excessive 
memory solver requirements, solving the 12×12×12 composite property problem proved intractable using 
the original formulation; whereas the reformulated version successfully determined the solution. For the 
10×10×10 discretization, the reformulation was 7.8 times faster than the original formulation. 
 
 
Table 2.—Comparison of the original and reformulated continuously reinforced (doubly-periodic) 
HFGMC implementations for determination of effective B/Al thermo-elastic properties as a 
function of RUC discretization. 

Equations Non-Zeros Sparseness Execution Time 
(s) 

Speed 
Up 

 
RUC 

 
Subcells 

Org. Reform. Org. Reform. Org. Reform. Org. Reform.  
4x4 16 240 120 1,184 872 0.979 0.939 0.028 0.020 1.4 
8x8 64 960 432 5,056 3,728 0.995 0.980 0.074 0.043 1.72 

16x16 256 3,840 1,632 20,672 15,008 0.9985 0.9943 0.31 0.21 1.47 
32x32 1,024 15,360 6,336 83,392 59,840 0.99964 0.9985 1.81 0.97 1.86 
64x64 4,096 61,440 24,960 334,784 238,592 0.999911 0.99961 15.8 6.47 2.44 
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Table 3.—Comparison of the original and reformulated discontinuously reinforced (triply-periodic) 
HFGMC implementations for determination of effective B/Al thermo-elastic properties as a 
function of RUC discretization. 

Equations Non-Zeros Sparseness Execution 
Time (s) 

Speed 
Up 

 
RUC 

 
Subcells 

Org. Reform. Org. Reform. Org. Reform. Org. Reform.  
4x4x4 64 1344 720 8,688 9,216 0.995 0.982 0.24 0.24 1.0 
6x6x6 216 4,536 2,268 30,648 32,100 0.9985 0.9937 5.34 2.52 2.12 
8x8x8 512 10,752 5,184 73,872 76,368 0.99936 0.99715 60.1 20.1 2.99 

10x10x10 1,000 21,000 9,900 145,560 149,076 0.99967 0.99847 782 99.9 7.89 
12x12x12 1,728 36,288 16,848 252,912 257,280 0.99980 0.99909 - 568 <12 

 
 
4. Conclusion 
 

 This paper has presented a comparison of the original formulation and reformulation of the high-
fidelity generalized method of cells (HFGMC) micromechanics model for analysis of continuous and 
discontinuous composite materials. The original formulation of HFGMC (Aboudi et al., 2001, 2002, 
2003), employed the microvariables appearing in the theory’s assumed quadratic local displacement field 
(eq. (2)) as the basic unknowns; whereas, recently, Bansal and Pindera (2004) presented a reformulation 
of the doubly-periodic, linear elastic HFGMC theory wherein the averaged interfacial displacements on 
the surfaces of the subcells serve as the basic unknowns. This reformulation significantly reduces the 
number of unknowns and consequently the number of linear algebraic equations that must be solved. As a 
result, the computational efficiency of HFGMC has been correspondingly enhanced. The present work 
extends the reformulated HFGMC to the inelastic, weakly-bonded, and triply-periodic cases. 
 Results presented herein indicate that, aside from some small numerical differences due to 
different numerical treatments of the inelastic terms in the two formulations, both (original and 
reformulated) implementations of HFGMC yield identical predictions on both the global (composite) and 
local (constituent) levels. This was demonstrated for the case of a perfectly bonded, continuously 
reinforced B/Al composite loaded longitudinally and transversely, as well as a discontinuous (particulate) 
B/Al composite case with both perfect and weak interfacial bonding. 
 Finally, a direct comparison of the computational efficiency of the original and reformulated 
versions of HFGMC was presented as a function of repeating unit cell refinement. Due to the reduced 
number of unknowns/equations present in the reformulated implementation, the model’s execution time 
has been improved significantly (the limit being approximately an order of magnitude increase) compared 
to the original formulation. The speed-up associated with the reformulation increases as the RUC density 
increases (by dividing it into a greater number of subcells). For the continuous reinforcement (doubly-
periodic) version, the reformulation provided an execution speed-up of 2.4 times for a 64×64 subcell 
discretization, while, in the case of discontinuous reinforcements, the reformulation provided an 
execution speed-up of 7.8 times for a 10×10×10 subcell discretization, over that of the original 
formulation. 
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The High-Fidelity Generalized Method of Cells (HFGMC) micromechanics model has recently been reformulated by Bansal and Pindera
(in the context of elastic phases with perfect bonding) to maximize its computational efficiency. This reformulated version of HFGMC
has now been extended to include both inelastic phases and imperfect fiber-matrix bonding. The present paper presents an overview of
the HFGMC theory in both its original and reformulated forms and a comparison of the results of the two implementations. The
objective is to establish the correlation between the two HFGMC formulations and document the improved efficiency offered by the
reformulation. The results compare the macro and micro scale predictions of the continuous reinforcement (doubly-periodic) and
discontinuous reinforcement (triply-periodic) versions of both formulations into the inelastic regime, and, in the case of the discontinu-
ous reinforcement version, with both perfect and weak interfacial bonding. The results demonstrate that identical predictions are obtained
using either the original or reformulated implementations of HFGMC aside from small numerical differences in the inelastic regime due
to the different implementation schemes used for the inelastic terms present in the two formulations. Finally, a direct comparison of
execution times is presented for the original formulation and reformulation code implementations. It is shown that as the discretization
employed in representing the composite repeating unit cell becomes increasingly refined (requiring a larger number of sub-volumes), the
reformulated implementation becomes significantly (approximately an order of magnitude at best) more computationally efficient in both
the continuous reinforcement (doubly-periodic) and discontinuous reinforcement (triply-periodic) cases.
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